如何攻击服务器udp端口_如何攻击服务器udp端口

hacker|
271

如何在路由封杀udp 端口,我要详细步骤

先下载一个名叫“E—QLive”的封杀软件,然后将它放入QQLive中,OK不只是屏蔽一个8000的问题,,QQ上线有好几种方式

QQ不仅仅通过UDP方式登录服务器,还能够以TCP方式登录。QQ在连接时首先向以下七个服务器的8000端口发送udp包。

sz.tencent.com 61.144.238.145

sz2.tencent.com 61.144.238.146

sz3.tencent.com 202.104.129.251

sz4.tencent.com 202.104.129.254

sz5.tencent.com 61.141.194.203

sz6.tencent.com 202.104.129.252

sz7.tencent.com 202.104.129.253

在阻断8000端口的连接后,QQ还会通过udp的8001和tcp的8000、8001端口进行连接。所以可以基于端口来作阻断规则。

在用防火墙阻断以上端口的数据包后,发现QQ还会通过tcp的80和443端口进行连接。如果针对这两个端口作阻断规则,会影响用户的正常上网,所以只能对服务器的ip地址来作规则。通过试验发现了以下可通过80和443端口建立连接的QQ服务器:

218.17.217.106

219.133.40.95

219.133.40.97,

219.133.40.157,

219.133.40.177,

219.133.40.73,

219.133.40.189

218.18.95.153

218.17.209.23

202.104.129.253

218.17.209.42

在针对这些IP作阻断规则后,QQ已基本无法登录。

在试验中还发现,QQ安装目录下的Config.db文件,其中记录了QQ服务器的地址,与我们上面找到的完全符合。

因此,在用防火墙阻止用户使用QQ上网时,除了阻止tcp和udp的8000、8001端口外,还需阻断与QQ服务器的连接。下面列举了在试验中找到的和在网上查到的QQ服务器IP:

61.141.194.203

61.144.238.145/146/149/155

61.172.249.135

65.54.229.253

202.96.170.164

202.104.129.151/251/252/253/254

211.157.38.38

218.17.209.23/42

218.17.217.106

218.18.95.153/165

219.133.40. 21/73/89/90/92/95/97/157/177/189(这个网段的服务器地址较多,可以考虑阻断整个网段)

虽然以上方法可以起到阻断QQ连接的作用,但如果腾讯增加新的QQ服务器,QQ也还是可以登录的。

另外,用第三方的代理软件如NEC E-BORDER等,支持Anonymous的Socks5?代理还是可能绕过去,登陆使用QQ。

怎么修改端口与更改UDP或是攻破?

这一个特殊页面列示由所给出的一个页面之链接到页面的最近更改(或者是对于指定分类的成员)。 在您的监视列表中的页面会以粗体显示。要更改UDP端口的问题,是防火墙的问题,可以防火墙中添加允许规则UDP 淹没攻击是导致基于主机的服务拒绝攻击的一种。针对IP发大量UDP包,占满所有带宽. 攻击者随机地向受害系统的端口发送 UDP 数据包的时候,就可能发生了 UDP 淹没攻击。当受害系统接收到一个 UDP 数据包的时候,它会确定目的端口正在等待中的应用程序。当它发现该端口中并不存在正在等待的应用程序,它就会产生一个目的地址无法连接的 ICMP 数据包发送给该伪造的源地址。如果向受害者计算机端口发送了足够多的 UDP 数据包的时候,整个系统就会瘫痪。

UDP flood

UDPFlood是日渐猖厥的流量型DoS攻击,原理也很简单。常见的情况是利用大量UDP小包冲击DNS服务器或Radius认证服务器、流媒体视频服务器。100k bps的UDPFlood经常将线路上的骨干设备例如防火墙打瘫,造成整个网段的瘫痪。由于UDP协议是一种无连接的服务,在UDPFLOOD攻击中,攻击者可发送大量伪造源IP地址的小UDP包。但是,由于UDP协议是无连接性的,所以只要开了一个UDP的端口提供相关服务的话,那么就可针对相关的服务进行攻击。

正常应用情况下,UDP包双向流量会基本相等,而且大小和内容都是随机的,变化很大。出现UDPFlood的情况下,针对同一目标IP的UDP包在一侧大量出现,并且内容和大小都比较固定。

UDP协议与 TCP 协议不同,是无连接状态的协议,并且UDP应用协议五花八门,差异极大,因此针对UDPFlood的防护非常困难。其防护要根据具体情况对待:?

判断包大小,如果是大包攻击则使用防止UDP碎片方法:根据攻击包大小设定包碎片重组大小,通常不小于1500。在极端情况下,可以考虑丢弃所有UDP碎片。?

攻击端口为业务端口:根据该业务UDP最大包长设置UDP最大包大小以过滤异常流量。?

攻击端口为非业务端口:一个是丢弃所有UDP包,可能会误伤正常业务;一个是建立UDP连接规则,要求所有去往该端口的UDP包,必须首先与TCP端口建立TCP连接。不过这种方法需要很专业的 防火墙 或其他防护设备支持

UDP攻击是一种消耗对方资源,也消耗你自己的资源的攻击方式,现在已经没人使用这种过时的东西了,你攻击了这个网站,其实也在消耗你的系统资源,说白了就是拼资源而已,看谁的带宽大,看谁能坚持到最后,这种攻击方式没有技术含量,引用别人的话,不要以为洪水无所不能,攻击程序在消耗对方资源的时候也在消耗你的资源

我们知道了TCP协议是一种面向连接的传输协议。但是UDP协议与TCP协议不同, UDP是一个无连接协议。使用UDP协议传输数据之前,客户端和服务器之间不建立连接,如果在从客户端到服务器端的传递过程中出现数据的丢失,协议本身并不能做出任何检测或提示。因此,通常人们把UDP协议称为不可靠的传输协议。

既然UDP是一种不可靠的网络协议,那么还有什么使用价值或必要呢?

其实不然,在有些情况下UDP协议可能会变得非常有用。因为UDP具有TCP所望尘莫及的速度优势。虽然TCP协议中植入了各种安全保障功能,但是在实际执行的过程中会占用大量的系统开销,无疑使传输速度受到严重的影响。反观UDP,由于排除了信息可靠传递机制,将安全和排序等功能移交给上层应用来完成,极大降低了执行时间,使传输速度得到了保证。

正是UDP协议的广泛应用,为黑客们发动UDP Flood攻击提供了平台。UDP Flood属于带宽类攻击,黑客们通过僵尸网络向目标服务器发起大量的UDP报文,这种UDP报文通常为大包,且速率非常快,通常会造成以下危害:

防火墙对UDP Flood的防御并不能像SYN Flood一样,进行源探测,因为它不建立连接。那应该怎么防御呢?

最初防火墙对UDP Flood的防御方式就是限流,通过限流将链路中的UDP报文控制在合理的带宽范围之内。

防火墙上针对UDP Flood的限流有三种:

限流虽然可以有效缓解链路带宽的压力,但是这种方式简单粗暴,容易对正常业务造成误判。为了解决这个问题,防火墙又进一步推出了针对UDP Flood的指纹学习功能。

仔细分析,不难发现,UDP Flood攻击报文具有一定的特点,这些攻击报文通常都拥有相同的特征字段,比如都包含某一个字符串,或整个报文内容一致。这些字段来自于DDoS工具自带的默认字符串,所以防火墙是通过收集这些字符串来检测UDP Flood。这种防御算法在现网使用很多,主要因为黑客为了加大攻击频率,快速、长时间挤占攻击目标所在网络带宽,在使用攻击工具实现时直接在内存存放一段内容,然后高频发送到攻击目标,所以攻击报文具有很高的相似性。而正常业务的UDP报文一般每个报文负载内容都是不一样的,这样可以减少误判。

从下面的抓包中可以看出,到达相同目的IP地址的两个UDP报文的载荷是完全一样的,如果防火墙收到大量的类似这样的UDP报文,那么就有可能是发生了UDP Flood攻击。

指纹学习是通过分析客户端向服务器发送的UDP报文载荷是否有大量的一致内容,来判定这个UDP报文是否异常。防火墙对到达指定目的地的UDP报文进行统计,当UDP报文达到告警阈值时,开始对UDP报文的指纹进行学习。如果相同的特征频繁出现,就会被学习成指纹,后续命中指纹的报文判定这是攻击报文,作为攻击特征进行过滤。

强叔再给大家总结一下,防火墙防御UDP Flood攻击主要有两种方式:限流和指纹学习,两种方式各有利弊。限流方式属于暴力型,可以很快将UDP流量限制在一个合理的范围内,但是不分青红皂白,超过就丢,可能会丢弃一些正常报文;而指纹学习属于理智型,不会随意丢弃报文,但是发生攻击后需要有个指纹学习的过程。目前,指纹学习功能是针对UDP Flood攻击的主流防御手段,在华为防火墙产品中广泛应用。

网络攻击器的原理是什么?是怎么向固定的ip地址发起进攻的?

常见网络攻击原理

1.1 TCP SYN拒绝服务攻击

一般情况下,一个TCP连接的建立需要经过三次握手的过程,即:

1、 建立发起者向目标计算机发送一个TCP SYN报文;

2、 目标计算机收到这个SYN报文后,在内存中创建TCP连接控制块(TCB),然后向发起者回送一个TCP ACK报文,等待发起者的回应;

3、 发起者收到TCP ACK报文后,再回应一个ACK报文,这样TCP连接就建立起来了。

利用这个过程,一些恶意的攻击者可以进行所谓的TCP SYN拒绝服务攻击:

1、 攻击者向目标计算机发送一个TCP SYN报文;

2、 目标计算机收到这个报文后,建立TCP连接控制结构(TCB),并回应一个ACK,等待发起者的回应;

3、 而发起者则不向目标计算机回应ACK报文,这样导致目标计算机一致处于等待状态。

可以看出,目标计算机如果接收到大量的TCP SYN报文,而没有收到发起者的第三次ACK回应,会一直等待,处于这样尴尬状态的半连接如果很多,则会把目标计算机的资源(TCB控制结构,TCB,一般情况下是有限的)耗尽,而不能响应正常的TCP连接请求。

1.2 ICMP洪水

正常情况下,为了对网络进行诊断,一些诊断程序,比如PING等,会发出ICMP响应请求报文(ICMP ECHO),接收计算机接收到ICMP ECHO后,会回应一个ICMP ECHO Reply报文。而这个过程是需要CPU处理的,有的情况下还可能消耗掉大量的资源,比如处理分片的时候。这样如果攻击者向目标计算机发送大量的ICMP ECHO报文(产生ICMP洪水),则目标计算机会忙于处理这些ECHO报文,而无法继续处理其它的网络数据报文,这也是一种拒绝服务攻击(DOS)。

1.3 UDP洪水

原理与ICMP洪水类似,攻击者通过发送大量的UDP报文给目标计算机,导致目标计算机忙于处理这些UDP报文而无法继续处理正常的报文。

1.4 端口扫描

根据TCP协议规范,当一台计算机收到一个TCP连接建立请求报文(TCP SYN)的时候,做这样的处理:

1、 如果请求的TCP端口是开放的,则回应一个TCP ACK报文,并建立TCP连接控制结构(TCB);

2、 如果请求的TCP端口没有开放,则回应一个TCP RST(TCP头部中的RST标志设为1)报文,告诉发起计算机,该端口没有开放。

相应地,如果IP协议栈收到一个UDP报文,做如下处理:

1、 如果该报文的目标端口开放,则把该UDP报文送上层协议(UDP)处理,不回应任何报文(上层协议根据处理结果而回应的报文例外);

2、 如果该报文的目标端口没有开放,则向发起者回应一个ICMP不可达报文,告诉发起者计算机该UDP报文的端口不可达。

利用这个原理,攻击者计算机便可以通过发送合适的报文,判断目标计算机哪些TCP或UDP端口是开放的,过程如下:

1、 发出端口号从0开始依次递增的TCP SYN或UDP报文(端口号是一个16比特的数字,这样最大为65535,数量很有限);

2、 如果收到了针对这个TCP报文的RST报文,或针对这个UDP报文的ICMP不可达报文,则说明这个端口没有开放;

3、 相反,如果收到了针对这个TCP SYN报文的ACK报文,或者没有接收到任何针对该UDP报文的ICMP报文,则说明该TCP端口是开放的,UDP端口可能开放(因为有的实现中可能不回应ICMP不可达报文,即使该UDP端口没有开放)。

这样继续下去,便可以很容易的判断出目标计算机开放了哪些TCP或UDP端口,然后针对端口的具体数字,进行下一步攻击,这就是所谓的端口扫描攻击。

1.5 分片IP报文攻击

为了传送一个大的IP报文,IP协议栈需要根据链路接口的MTU对该IP报文进行分片,通过填充适当的IP头中的分片指示字段,接收计算机可以很容易的把这些IP分片报文组装起来。

目标计算机在处理这些分片报文的时候,会把先到的分片报文缓存起来,然后一直等待后续的分片报文,这个过程会消耗掉一部分内存,以及一些IP协议栈的数据结构。如果攻击者给目标计算机只发送一片分片报文,而不发送所有的分片报文,这样攻击者计算机便会一直等待(直到一个内部计时器到时),如果攻击者发送了大量的分片报文,就会消耗掉目标计算机的资源,而导致不能相应正常的IP报文,这也是一种DOS攻击。

1.6 SYN比特和FIN比特同时设置

在TCP报文的报头中,有几个标志字段:

1、 SYN:连接建立标志,TCP SYN报文就是把这个标志设置为1,来请求建立连接;

2、 ACK:回应标志,在一个TCP连接中,除了第一个报文(TCP SYN)外,所有报文都设置该字段,作为对上一个报文的相应;

3、 FIN:结束标志,当一台计算机接收到一个设置了FIN标志的TCP报文后,会拆除这个TCP连接;

4、 RST:复位标志,当IP协议栈接收到一个目标端口不存在的TCP报文的时候,会回应一个RST标志设置的报文;

5、 PSH:通知协议栈尽快把TCP数据提交给上层程序处理。

正常情况下,SYN标志(连接请求标志)和FIN标志(连接拆除标志)是不能同时出现在一个TCP报文中的。而且RFC也没有规定IP协议栈如何处理这样的畸形报文,因此,各个操作系统的协议栈在收到这样的报文后的处理方式也不同,攻击者就可以利用这个特征,通过发送SYN和FIN同时设置的报文,来判断操作系统的类型,然后针对该操作系统,进行进一步的攻击。

1.7 没有设置任何标志的TCP报文攻击

正常情况下,任何TCP报文都会设置SYN,FIN,ACK,RST,PSH五个标志中的至少一个标志,第一个TCP报文(TCP连接请求报文)设置SYN标志,后续报文都设置ACK标志。有的协议栈基于这样的假设,没有针对不设置任何标志的TCP报文的处理过程,因此,这样的协议栈如果收到了这样的报文,可能会崩溃。攻击者利用了这个特点,对目标计算机进行攻击。

1.8 设置了FIN标志却没有设置ACK标志的TCP报文攻击

正常情况下,ACK标志在除了第一个报文(SYN报文)外,所有的报文都设置,包括TCP连接拆除报文(FIN标志设置的报文)。但有的攻击者却可能向目标计算机发送设置了FIN标志却没有设置ACK标志的TCP报文,这样可能导致目标计算机崩溃。

1.9 死亡之PING

TCP/IP规范要求IP报文的长度在一定范围内(比如,0-64K),但有的攻击计算机可能向目标计算机发出大于64K长度的PING报文,导致目标计算机IP协议栈崩溃。

1.10 地址猜测攻击

跟端口扫描攻击类似,攻击者通过发送目标地址变化的大量的ICMP ECHO报文,来判断目标计算机是否存在。如果收到了对应的ECMP ECHO REPLY报文,则说明目标计算机是存在的,便可以针对该计算机进行下一步的攻击。

1.11 泪滴攻击

对于一些大的IP包,需要对其进行分片传送,这是为了迎合链路层的MTU(最大传输单元)的要求。比如,一个4500字节的IP包,在MTU为1500的链路上传输的时候,就需要分成三个IP包。

在IP报头中有一个偏移字段和一个分片标志(MF),如果MF标志设置为1,则表面这个IP包是一个大IP包的片断,其中偏移字段指出了这个片断在整个IP包中的位置。例如,对一个4500字节的IP包进行分片(MTU为1500),则三个片断中偏移字段的值依次为:0,1500,3000。这样接收端就可以根据这些信息成功的组装该IP包。

如果一个攻击者打破这种正常情况,把偏移字段设置成不正确的值,即可能出现重合或断开的情况,就可能导致目标操作系统崩溃。比如,把上述偏移设置为0,1300,3000。这就是所谓的泪滴攻击。

1.12 带源路由选项的IP报文

为了实现一些附加功能,IP协议规范在IP报头中增加了选项字段,这个字段可以有选择的携带一些数据,以指明中间设备(路由器)或最终目标计算机对这些IP报文进行额外的处理。

源路由选项便是其中一个,从名字中就可以看出,源路由选项的目的,是指导中间设备(路由器)如何转发该数据报文的,即明确指明了报文的传输路径。比如,让一个IP报文明确的经过三台路由器R1,R2,R3,则可以在源路由选项中明确指明这三个路由器的接口地址,这样不论三台路由器上的路由表如何,这个IP报文就会依次经过R1,R2,R3。而且这些带源路由选项的IP报文在传输的过程中,其源地址不断改变,目标地址也不断改变,因此,通过合适的设置源路由选项,攻击者便可以伪造一些合法的IP地址,而蒙混进入网络。

1.13 带记录路由选项的IP报文

记录路由选项也是一个IP选项,携带了该选项的IP报文,每经过一台路由器,该路由器便把自己的接口地址填在选项字段里面。这样这些报文在到达目的地的时候,选项数据里面便记录了该报文经过的整个路径。

通过这样的报文可以很容易的判断该报文经过的路径,从而使攻击者可以很容易的寻找其中的攻击弱点。

1.14 未知协议字段的IP报文

在IP报文头中,有一个协议字段,这个字段指明了该IP报文承载了何种协议 ,比如,如果该字段值为1,则表明该IP报文承载了ICMP报文,如果为6,则是TCP,等等。目前情况下,已经分配的该字段的值都是小于100的,因此,一个带大于100的协议字段的IP报文,可能就是不合法的,这样的报文可能对一些计算机操作系统的协议栈进行破坏。

1.15 IP地址欺骗

一般情况下,路由器在转发报文的时候,只根据报文的目的地址查路由表,而不管报文的源地址是什么,因此,这样就 可能面临一种危险:如果一个攻击者向一台目标计算机发出一个报文,而把报文的源地址填写为第三方的一个IP地址,这样这个报文在到达目标计算机后,目标计算机便可能向毫无知觉的第三方计算机回应。这便是所谓的IP地址欺骗攻击。

比较著名的SQL Server蠕虫病毒,就是采用了这种原理。该病毒(可以理解为一个攻击者)向一台运行SQL Server解析服务的服务器发送一个解析服务的UDP报文,该报文的源地址填写为另外一台运行SQL Server解析程序(SQL Server 2000以后版本)的服务器,这样由于SQL Server 解析服务的一个漏洞,就可能使得该UDP报文在这两台服务器之间往复,最终导致服务器或网络瘫痪。

1.16 WinNuke攻击

NetBIOS作为一种基本的网络资源访问接口,广泛的应用于文件共享,打印共享,进程间通信(IPC),以及不同操作系统之间的数据交换。一般情况下,NetBIOS是运行在LLC2链路协议之上的,是一种基于组播的网络访问接口。为了在TCP/IP协议栈上实现NetBIOS,RFC规定了一系列交互标准,以及几个常用的TCP/UDP端口:

139:NetBIOS会话服务的TCP端口;

137:NetBIOS名字服务的UDP端口;

136:NetBIOS数据报服务的UDP端口。

WINDOWS操作系统的早期版本(WIN95/98/NT)的网络服务(文件共享等)都是建立在NetBIOS之上的,因此,这些操作系统都开放了139端口(最新版本的WINDOWS 2000/XP/2003等,为了兼容,也实现了NetBIOS over TCP/IP功能,开放了139端口)。

WinNuke攻击就是利用了WINDOWS操作系统的一个漏洞,向这个139端口发送一些携带TCP带外(OOB)数据报文,但这些攻击报文与正常携带OOB数据报文不同的是,其指针字段与数据的实际位置不符,即存在重合,这样WINDOWS操作系统在处理这些数据的时候,就会崩溃。

1.17 Land攻击

LAND攻击利用了TCP连接建立的三次握手过程,通过向一个目标计算机发送一个TCP SYN报文(连接建立请求报文)而完成对目标计算机的攻击。与正常的TCP SYN报文不同的是,LAND攻击报文的源IP地址和目的IP地址是相同的,都是目标计算机的IP地址。这样目标计算机接收到这个SYN报文后,就会向该报文的源地址发送一个ACK报文,并建立一个TCP连接控制结构(TCB),而该报文的源地址就是自己,因此,这个ACK报文就发给了自己。这样如果攻击者发送了足够多的SYN报文,则目标计算机的TCB可能会耗尽,最终不能正常服务。这也是一种DOS攻击。

0条大神的评论

发表评论