端口扫描器的用法?
扫描器使用方法大家好很高兴你能进如我们的第四课!由先在起所有的课将由我来主讲,由于课程涉及
的是网络最高安全问题,所以我不得不警告各位,你要清楚的认识到你在干什么,其实
第四课的内容我们换了又换,有很多是一些攻击性很强的,我不得不CUT,所以次文才迟
迟出来!!同时我也希望进入这一课时的学友能多多的帮助其它人!
在INTERNET安全领域,扫描器可以说是黑客的基本武器,
一个好的TCP端口扫描器相当与几百个合法用户的口令及
密码是等同的,这样说一点也不过分!
1,什么是扫描器
扫描器是一种自动检测远程或本地主机安全性弱点的程序,
通过使用扫描器你可一不留痕迹的发现远程服务器的各种TCP
端口的分配及提供的服务!和它们的软件版本!这就能让我们
间接的或直观的了解到远程主机所存在的安全问题。
2,工作原理
扫描器通过选用远程TCP/IP不同的端口的服务,并记录目标
给予的回答,通过这种方法,可以搜集到很多关于目标主机的
各种有用的信息(比如:是否能用匿名登陆!是否有可写的FTP
目录,是否能用TELNET,HTTPD是用ROOT还是nobady在跑!)
3,扫描器的运行平台!
尽管大多数的工作站是用UNIX的,由于UNIX的应用软件的可移殖
性,如今的扫描器以有了支持各种平台,这一点大大方便了许多
单机的用户!但同时也带来了更多的网络安全问题,这句老话我想
大家一定是听到过很多次!------网络安全刻不容缓!!!
4,扫描器能干什么?
扫描器并不是一个直接的攻击网络漏洞的程序,它不同于第二课中
的许多NUCK程序!它仅仅能帮助我们发现目标机的某些内在的弱点
而这些现存的弱点可能是(请看清楚可能是,并非一定)破坏目标
机安全关键,但是我想说明的是对于一个刚刚入们的黑客人来说
这些数据对他来说无疑是一个毫无价值的数据集合!,而对一个
掌握和精通各种网络应用程序的漏洞的黑客来说这就不仅仅是一个简单
的数据集合!他的价值远超过几百个有用的帐号!-------知识需要
积累!!!
5,种类
1。NNS(网络安全扫描器)
用PERL编写,工作在Sunos4.1.3
进行下面的常规的扫描
Sendmail ,TFTP,匿名FTP,Hosts.equive,Xhost
增强扫描
Apple Talk,
Novell
LAN管理员网络
取得指定域的列表或报告!
用PING命令确定指定主机是否是活性的,
扫描目标机端口
报告指定地址的漏洞
你可以到这个地址下载
2.STROBE(超级优化TCP端口检测程序)
它是一个TCP端口的扫描器,能快速的识别指定机器上正运行
什么服务,
用于扫描网络漏洞
SATAN(安全管理员的网络分析工具)
扫描远程主机的许多已知的漏洞
FTPD中可写的目录
NFS
NIS
PSH
SENDMAIL
X服务
Jakal(秘密扫描器)
可以不留痕迹的扫描
IdenTCPscan
CONNECT 扫描TFTP服务器子网
ESPScan 扫描FSP服务器
XSCAN
实例扫描
或用关键字搜寻!你能了解到更多的情况!
1,UNIX平台的SAFEsuite
safesuite的组成,INTERNET,WEB,防火墙扫描!
safesuite的攻击,sendmail,FTP,NNTP,TELNET,RPC,NFS.
ISS的开发小组在最新的版本里还增设了IP欺骗和拒绝服务的攻击,用以支持对主机安全
性的分析。
可以运行的平台:Sun OS 4.1.3 up,SoLaris 2.0 up,HP/UX9.05 up,IBM AIIX 3.2.5 u
p
Linux 1.2.x,Linux1.3.x,Linux 1.3.76+
安装:
解压后拷贝到指定的目录,你可用下面的命令来解!
tar -xvf ISS_XXX.tar
运行ISS.install开始安装!
由于扫描的结果太长我就不一一写出来了!!大家可以多试试!很多有用的安全信息都
在这些扫描结果里!!通过MIT的X窗口系统标准配置运行如SAVEsuite,X窗口的管理程
序是FVWM。
Network Toolbox
用于WINDOWS 95上的TCP/IP的应用程序,
默认扫描端口是!14个TCP/IP端口,
port 9,13,21,25,,37,79,80,110,111,512,513,514,
你可以通过设置属性来改变默认的配置!!
我不知道我上述的下载地址是否还有效!但我想你可一到一些国外著名的黑客站找到你
想要的一切!!
课后作业,请把你扫描的信息告诉我们,我们将在下一课拿出一些信息来加以分析,安
全漏洞出在哪里!并对各种可能发生的漏洞加以分析!!
cmd扫描多个端口命令
1、cmd进行端口扫描,如果界面输入的地址没有被使用的,不支持windows跳线。
2、添加节点标签以K8scaler容器的形式添加Task。
3、Manager会自动创建,Manager每天自动添加节点。
一般情况下,采用端口扫描可以比较快速了解某台主机上提供了哪些网络服务
通过135端口入侵实际上是利用RPC漏洞来攻击计算机的。一般情况下135端口主要用于使用RPC(Remote Procedure Call,远程过程调用)
协议并提供DCOM(分布式组件对象模型)服务,通过RPC可以保证在一台计算机上运行的程序可以顺利地 执行远程计算机上的代码;
使用DCOM可以通过网络直接进行通信,能够跨包括HTTP协议在内的多种网络传输。RPC本身在处理通过TCP/IP的消息交换部分有一个漏洞,该漏洞是由于错误地处理格式不正确的消息造成的。会影响到RPC与DCOM之间的一个接口,该接口侦听的端口就是135。
下面我就来介绍一下通过135端口入侵的方法。
(1)通过135端口入侵,攻击者首先需要查找网络上存在135端口漏洞的主机地址,在查找此类主机过程中,可以使用一些扫描工具,比如SuperScan就是典型的端口工具之一。在SuperScan逗开始地文本框中输入需要扫描的起始地址,然后在逗结束地文本框里填写好扫描结束的IP地址,在逗扫描类型地选项中选择逗所有端口定义地单选按钮,并在右侧的文本框中输入逗135地。再点击逗开始地按钮即可开始扫描。扫描结束后,在下方的列表中可以查看目标主机打开的端口。然后再点击逗Save地按钮选好保存路径,把里面有漏洞的IP整理下即可。
(2)得到有漏洞后,我们还有一个功能强大的扫描工具,比如NTSscn汉化版。然后在逗主机文件逗处点击逗打开地按钮找到我们刚才保存的IP路径,在连接共享$处选择逗WMI扫描地,在逗扫描打开端口的主机地处填写135端口。最后点击逗开始地即可。要不了多久就会有结果显示。
(3)获得漏洞主机用户名以后,我们需要一个开启的工具,那就是Recton v2.5。好了,万事具备之欠那逗东风地拉。把刚刚扫描的IP输入TELNET界面的逗远程主机地处,以及用户名和密码,不过一般情况下密码都是空。下一步点击逗开始执行地按钮等待把TELNET打开吧。打开后按WIN+R输入CMD进入再输入Telnet IP 回车,会提示让你输入用户名,把用户名输入后,回车即可进入主机。而且得到的还是SYSTEM权限。
下一步就是为我们加了拥有管理员权限的用户,看看我杰作。最后我们可以上传一些远程性木马软件作为后门,比如灰鸽子,冰河等。在这里我就不在展示。我还是喜欢3389端口,那我就给他上传个开启3389的脚本,不过对于开启3389端口的工具网上还真的不少,比如Recton v2.5就有这个功能。好了3389端口已经成功开启大家看我连接的。怎么样,就这么轻松得到了一台。是不是很过瘾啊。
如何扫描某一计算机开放的所有端口
在命令提示符中输入netstat -an可以扫描某一计算机开放的所有端口,具体步骤如下:
工具/材料:电脑
1、打开电脑,右键单击左下角开始,然后点击运行。
2、在运行的输入框里面输入cmd,然后点击确定。
3、在弹出的cmd.exe中输入netstat -an,然后敲击回车,这样就可以看到这个计算机所有开放的端口了。
Kali Linux 网络扫描秘籍 第三章 端口扫描(二)
执行 TCP 端口扫描的一种方式就是执行一部分。目标端口上的 TCP 三次握手用于识别端口是否接受连接。这一类型的扫描指代隐秘扫描, SYN 扫描,或者半开放扫描。这个秘籍演示了如何使用 Scapy 执行 TCP 隐秘扫描。
为了使用 Scapy 执行 TCP 隐秘 扫描,你需要一个运行 TCP 网络服务的远程服务器。这个例子中我们使用 Metasploitable2 实例来执行任务。配置 Metasploitable2 的更多信息请参考第一章中的“安装 Metasploitable2”秘籍。
此外,这一节也需要编写脚本的更多信息,请参考第一章中的“使用文本编辑器*VIM 和 Nano)。
为了展示如何执行 SYN 扫描,我们需要使用 Scapy 构造 TCP SYN 请求,并识别和开放端口、关闭端口以及无响应系统有关的响应。为了向给定端口发送 TCP SYN 请求,我们首先需要构建请求的各个层面。我们需要构建的第一层就是 IP 层:
为了构建请求的 IP 层,我们需要将 IP 对象赋给变量 i 。通过调用 display 函数,我们可以确定对象的属性配置。通常,发送和接受地址都设为回送地址, 127.0.0.1 。这些值可以通过修改目标地址来修改,也就是设置 i.dst 为想要扫描的地址的字符串值。通过再次调用 dislay 函数,我们看到不仅仅更新的目标地址,也自动更新了和默认接口相关的源 IP 地址。现在我们构建了请求的 IP 层,我们可以构建 TCP 层了。
为了构建请求的 TCP 层,我们使用和 IP 层相同的技巧。在这个立即中, TCP 对象赋给了 t 变量。像之前提到的那样,默认的配置可以通过调用 display 函数来确定。这里我们可以看到目标端口的默认值为 HTTP 端口 80。对于我们的首次扫描,我们将 TCP 设置保留默认。现在我们创建了 TCP 和 IP 层,我们需要将它们叠放来构造请求。
我们可以通过以斜杠分离变量来叠放 IP 和 TCP 层。这些层面之后赋给了新的变量,它代表整个请求。我们之后可以调用 dispaly 函数来查看请求的配置。一旦构建了请求,可以将其传递给 sr1 函数来分析响应:
相同的请求可以不通过构建和堆叠每一层来执行。反之,我们使用单独的一条命令,通过直接调用函数并传递合适的参数:
要注意当 SYN 封包发往目标 Web 服务器的 TCP 端口 80,并且该端口上运行了 HTTP 服务时,响应中会带有 TCP 标识 SA 的值,这表明 SYN 和 ACK 标识都被激活。这个响应表明特定的目标端口是开放的,并接受连接。如果相同类型的封包发往不接受连接的端口,会收到不同的请求。
当 SYN 请求发送给关闭的端口时,返回的响应中带有 TCP 标识 RA,这表明 RST 和 ACK 标识为都被激活。ACK 为仅仅用于承认请求被接受,RST 为用于断开连接,因为端口不接受连接。作为替代,如果 SYN 封包发往崩溃的系统,或者防火墙过滤了这个请求,就可能接受不到任何信息。由于这个原因,在 sr1 函数在脚本中使用时,应该始终使用 timeout 选项,来确保脚本不会在无响应的主机上挂起。
如果函数对无响应的主机使用时, timeout 值没有指定,函数会无限继续下去。这个演示中, timout 值为 1秒,用于使这个函数更加完备,响应的值可以用于判断是否收到了响应:
Python 的使用使其更易于测试变量来识别 sr1 函数是否对其复制。这可以用作初步检验,来判断是否接收到了任何响应。对于接收到的响应,可以执行一系列后续检查来判断响应表明端口开放还是关闭。这些东西可以轻易使用 Python 脚本来完成,像这样:
在这个 Python 脚本中,用于被提示来输入 IP 地址,脚本之后会对定义好的端口序列执行 SYN 扫描。脚本之后会得到每个连接的响应,并尝试判断响应的 SYN 和 ACK 标识是否激活。如果响应中出现并仅仅出现了这些标识,那么会输出相应的端口号码。
运行这个脚本之后,输出会显示所提供的 IP 地址的系统上,前 100 个端口中的开放端口。
这一类型的扫描由发送初始 SYN 封包给远程系统的目标 TCP 端口,并且通过返回的响应类型来判断端口状态来完成。如果远程系统返回了 SYN+ACK 响应,那么它正在准备建立连接,我们可以假设这个端口开放。如果服务返回了 RST 封包,这就表明端口关闭并且不接收连接。此外,如果没有返回响应,扫描系统和远程系统之间可能存在防火墙,它丢弃了请求。这也可能表明主机崩溃或者目标 IP 上没有关联任何系统。
Nmap 拥有可以执行远程系统 SYN 扫描的扫描模式。这个秘籍展示了如何使用 Namp 执行 TCP 隐秘扫描。
为了使用 Nmap 执行 TCP 隐秘扫描,你需要一个运行 TCP 网络服务的远程服务器。这个例子中我们使用 Metasploitable2 实例来执行任务。配置 Metasploitable2 的更多信息请参考第一章中的“安装 Metasploitable2”秘籍。
就像多数扫描需求那样,Nmap 拥有简化 TCP 隐秘扫描执行过程的选项。为了使用 Nmap 执行 TCP 隐秘扫描,应使用 -sS 选项,并附带被扫描主机的 IP 地址。
在提供的例子中,特定的 IP 地址的 TCP 80 端口上执行了 TCP 隐秘扫描。和 Scapy 中的技巧相似,Nmap 监听响应并通过分析响应中所激活的 TCP 标识来识别开放端口。我们也可以使用 Namp 执行多个特定端口的扫描,通过传递逗号分隔的端口号列表。
在这个例子中,目标 IP 地址的端口 21、80 和 443 上执行了 SYN 扫描。我们也可以使用 Namp 来扫描主机序列,通过标明要扫描的第一个和最后一个端口号,以破折号分隔:
在所提供的例子中,SYN 扫描在 TCP 20 到 25 端口上执行。除了拥有指定被扫描端口的能力之外。Nmap 同时拥有配置好的 1000 和常用端口的列表。我们可以执行这些端口上的扫描,通过不带任何端口指定信息来运行 Nmap:
在上面的例子中,扫描了 Nmap 定义的 1000 个常用端口,用于识别 Metasploitable2 系统上的大量开放端口。虽然这个技巧在是被多数设备上很高效,但是也可能无法识别模糊的服务或者不常见的端口组合。如果扫描在所有可能的 TCP 端口上执行,所有可能的端口地址值都需要被扫描。定义了源端口和目标端口地址的 TCP 头部部分是 16 位长。并且,每一位可以为 1 或者 0。因此,共有 2 ** 16 或者 65536 个可能的 TCP 端口地址。对于要扫描的全部可能的地址空间,需要提供 0 到 65535 的端口范围,像这样:
这个例子中,Metasploitable2 系统上所有可能的 65536 和 TCP 地址都扫描了一遍。要注意该扫描中识别的多数服务都在标准的 Nmap 1000 扫描中识别过了。这就表明在尝试识别目标的所有可能的攻击面的时候,完整扫描是个最佳实践。Nmap 可以使用破折号记法,扫描主机列表上的 TCP 端口:
这个例子中,TCP 80 端口的 SYN 扫描在指定地址范围内的所有主机上执行。虽然这个特定的扫描仅仅执行在单个端口上,Nmap 也能够同时扫描多个系统上的多个端口和端口范围。此外,Nmap 也能够进行配置,基于 IP 地址的输入列表来扫描主机。这可以通过 -iL 选项并指定文件名,如果文件存放于执行目录中,或者文件路径来完成。Nmap 之后会遍历输入列表中的每个地址,并对地址执行特定的扫描。
Nmap SYN 扫描背后的底层机制已经讨论过了。但是,Nmap 拥有多线程功能,是用于执行这类扫描的快速高效的方式。
除了其它已经讨论过的工具之外,Metasploit 拥有用于 SYN 扫描的辅助模块。这个秘籍展示了如何使用 Metasploit 来执行 TCP 隐秘扫描。
为了使用 Metasploit 执行 TCP 隐秘扫描,你需要一个运行 TCP 网络服务的远程服务器。这个例子中我们使用 Metasploitable2 实例来执行任务。配置 Metasploitable2 的更多信息请参考第一章中的“安装 Metasploitable2”秘籍。
Metasploit 拥有可以对特定 TCP 端口执行 SYN 扫描的辅助模块。为了在 Kali 中启动 Metasploit,我们在终端中执行 msfconsole 命令。
为了在 Metasploit 中执行 SYN 扫描,以辅助模块的相对路径调用 use 命令。一旦模块被选中,可以执行 show options 命令来确认或修改扫描配置。这个命令会展示四列的表格,包括 name 、 current settings 、 required 和 description 。 name 列标出了每个可配置变量的名称。 current settings 列列出了任何给定变量的现有配置。 required 列标出对于任何给定变量,值是否是必须的。 description 列描述了每个变量的功能。任何给定变量的值可以使用 set 命令,并且将新的值作为参数来修改。
在上面的例子中, RHOSTS 值修改为我们打算扫描的远程系统的 IP 地址。地外,线程数量修改为 20。 THREADS 的值定义了在后台执行的当前任务数量。确定线程数量涉及到寻找一个平衡,既能提升任务速度,又不会过度消耗系统资源。对于多数系统,20 个线程可以足够快,并且相当合理。 PORTS 值设为 TCP 端口 80(HTTP)。修改了必要的变量之后,可以再次使用 show options 命令来验证。一旦所需配置验证完毕,就可以执行扫描了。
上面的例子中,所指定的远程主机的钱 100 个 TCP 端口上执行了 TCP SYN 扫描。虽然这个扫描识别了目标系统的多个设备,我们不能确认所有设备都识别出来,除非所有可能的端口地址都扫描到。定义来源和目标端口地址的TCP 头部部分是 16 位长。并且,每一位可以为 1 或者 0。因此,共有 2 ** 16 或 65536 个可能的 TCP 端口地址。对于要扫描的整个地址空间,需要提供 0 到 65535 的 端口范围,像这样:
在这个李忠,远程系统的所有开放端口都由扫描所有可能的 TCP 端口地址来识别。我们也可以修改扫描配置使用破折号记法来扫描地址序列。
这个例子中,TCP SYN 扫描执行在由 RHOST 变量指定的所有主机地址的 80 端口上。与之相似, RHOSTS 可以使用 CIDR 记法定义网络范围。
Metasploit SYN 扫描辅助模块背后的底层原理和任何其它 SYN 扫描工具一样。对于每个被扫描的端口,会发送 SYN 封包。SYN+ACK 封包会用于识别活动服务。使用 MEtasploit 可能更加有吸引力,因为它拥有交互控制台,也因为它是个已经被多数渗透测试者熟知的工具。
除了我们之前学到了探索技巧,hping3 也可以用于执行端口扫描。这个秘籍展示了如何使用 hping3 来执行 TCP 隐秘扫描。
为了使用 hping3 执行 TCP 隐秘扫描,你需要一个运行 TCP 网络服务的远程服务器。这个例子中我们使用 Metasploitable2 实例来执行任务。配置 Metasploitable2 的更多信息请参考第一章中的“安装 Metasploitable2”秘籍。
除了我们之前学到了探索技巧,hping3 也可以用于执行端口扫描。为了使用 hping3 执行端口扫描,我们需要以一个整数值使用 --scan 模式来指定要扫描的端口号。
上面的例子中,SYN 扫描执行在指定 IP 地址的 TCP 端口 80 上。 -S 选项指明了发给远程系统的封包中激活的 TCP 标识。表格展示了接收到的响应封包中的属性。我们可以从输出中看到,接收到了SYN+ACK 响应,所以这表示目标主机端口 80 是开放的。此外,我们可以通过输入够好分隔的端口号列表来扫描多个端口,像这样:
在上面的扫描输出中,你可以看到,仅仅展示了接受到 SYN+ACK 标识的结果。要注意和发送到 443 端口的 SYN 请求相关的响应并没有展示。从输出中可以看出,我们可以通过使用 -v 选项增加详细读来查看所有响应。此外,可以通过传递第一个和最后一个端口地址值,来扫描端口范围,像这样:
这个例子中,100 个端口的扫描足以识别 Metasploitable2 系统上的服务。但是,为了执行 所有 TCP 端口的扫描,需要扫描所有可能的端口地址值。定义了源端口和目标端口地址的 TCP 头部部分是 16 位长。并且,每一位可以为 1 或者 0。因此,共有 2 ** 16 或者 65536 个可能的 TCP 端口地址。对于要扫描的全部可能的地址空间,需要提供 0 到 65535 的端口范围,像这样:
hping3 不用于一些已经提到的其它工具,因为它并没有 SYN 扫描模式。但是反之,它允许你指定 TCP 封包发送时的激活的 TCP 标识。在秘籍中的例子中, -S 选项让 hping3 使用 TCP 封包的 SYN 标识。
在多数扫描工具当中,TCP 连接扫描比 SYN 扫描更加容易。这是因为 TCP 连接扫描并不需要为了生成和注入 SYN 扫描中使用的原始封包而提升权限。Scapy 是它的一大例外。Scapy 实际上非常难以执行完全的 TCP 三次握手,也不实用。但是,出于更好理解这个过程的目的,我们来看看如何使用 Scapy 执行连接扫描。
为了使用 Scapy 执行全连接扫描,你需要一个运行 UDP 网络服务的远程服务器。这个例子中我们使用 Metasploitable2 实例来执行任务。配置 Metasploitable2 的更多信息请参考第一章中的“安装 Metasploitable2”秘籍。
此外,这一节也需要编写脚本的更多信息,请参考第一章中的“使用文本编辑器*VIM 和 Nano)。
Scapy 中很难执行全连接扫描,因为系统内核不知道你在 Scapy 中发送的请求,并且尝试阻止你和远程系统建立完整的三次握手。你可以在 Wireshark 或 tcpdump 中,通过发送 SYN 请求并嗅探相关流量来看到这个过程。当你接收到来自远程系统的 SYN+ACK 响应时,Linux 内核会拦截它,并将其看做来源不明的响应,因为它不知道你在 Scapy 中 发送的请求。并且系统会自动使用 TCP RST 封包来回复,因此会断开握手过程。考虑下面的例子:
这个 Python 脚本的例子可以用做 POC 来演系统破坏三次握手的问题。这个脚本假设你将带有开放端口活动系统作为目标。因此,假设 SYN+ACK 回复会作为初始 SYN 请求的响应而返回。即使发送了最后的 ACK 回复,完成了握手,RST 封包也会阻止连接建立。我们可以通过观察封包发送和接受来进一步演示。
在这个 Python 脚本中,每个发送的封包都在传输之前展示,并且每个收到的封包都在到达之后展示。在检验每个封包所激活的 TCP 标识的过程中,我们可以看到,三次握手失败了。考虑由脚本生成的下列输出:
在脚本的输出中,我们看到了四个封包。第一个封包是发送的 SYN 请求,第二个封包时接收到的 SYN+ACK 回复,第三个封包时发送的 ACK 回复,之后接收到了 RST 封包,它是最后的 ACK 回复的响应。最后一个封包表明,在建立连接时出现了问题。Scapy 中可能能够建立完成的三次握手,但是它需要对本地 IP 表做一些调整。尤其是,如果你去掉发往远程系统的 TSR 封包,你就可以完成握手。通过使用 IP 表建立过滤机制,我们可以去掉 RST 封包来完成三次握手,而不会干扰到整个系统(这个配置出于功能上的原理并不推荐)。为了展示完整三次握手的成功建立,我们使用 Netcat 建立 TCP 监听服务。之后尝试使用 Scapy 连接开放的端口。
这个例子中,我们在 TCP 端口 4444 开启了监听服务。我们之后可以修改之前的脚本来尝试连接 端口 4444 上的 Netcat 监听服务。
这个脚本中,SYN 请求发送给了监听端口。收到 SYN+ACK 回复之后,会发送 ACK回复。为了验证连接尝试被系统生成的 RST 封包打断,这个脚本应该在 Wireshark 启动之后执行,来捕获请求蓄力。我们使用 Wireshark 的过滤器来隔离连接尝试序列。所使用的过滤器是 tcp (ip.src == 172.16.36.135 || ip.dst == 172.16.36.135) 。过滤器仅仅用于展示来自或发往被扫描系统的 TCP 流量。像这样:
既然我们已经精确定位了问题。我们可以建立过滤器,让我们能够去除系统生成的 RST 封包。这个过滤器可以通过修改本地 IP 表来建立:
在这个例子中,本地 IP 表的修改去除了所有发往被扫描主机的目标地址的 TCP RST 封包。 list 选项随后可以用于查看 IP 表的条目,以及验证配置已经做了修改。为了执行另一次连接尝试,我们需要确保 Natcat 仍旧监听目标的 4444 端口,像这样:
和之前相同的 Python 脚本可以再次使用,同时 WIreshark 会捕获后台的流量。使用之前讨论的显示过滤器,我们可以轻易专注于所需的流量。要注意三次握手的所有步骤现在都可以完成,而不会收到系统生成的 RST 封包的打断,像这样:
此外,如果我们看一看运行在目标系统的 Netcat 服务,我们可以注意到,已经建立了连接。这是用于确认成功建立连接的进一步的证据。这可以在下面的输出中看到:
虽然这个练习对理解和解决 TCP 连接的问题十分有帮助,恢复 IP 表的条目也十分重要。RST 封包 是 TCP 通信的重要组成部分,去除这些响应会影响正常的通信功能。洗唛按的命令可以用于刷新我们的 iptable 规则,并验证刷新成功:
就像例子中展示的那样, flush 选项应该用于清楚 IP 表的条目。我们可以多次使用 list 选项来验证 IP 表的条目已经移除了。
执行 TCP 连接扫描的同居通过执行完整的三次握手,和远程系统的所有被扫描端口建立连接。端口的状态取决于连接是否成功建立。如果连接建立,端口被认为是开放的,如果连接不能成功建立,端口被认为是关闭的。
如何扫描远程计算机被动打开的端口
扫描某一计算机开放的所有端口可在windows系统输入-netstat-an即可。首先,打开电脑的控制面板,然后在控制面板中找到防火墙,在防火墙设置左边选择点击高级设置,高级安全设置中,我们点击选择左边的入站规则,在右侧栏选择点击新建规则,规则类型选择端口类型,选择tcp协议,特定端口,端口自己规定,比如4444,何时应用规则,默认全选,退出之后,我们就看到创建的入站规则,该端口允许。
0条大神的评论